Statistical Learning

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

What is Statistical Learning?

- Shown are *Sales* vs. *TV*, *Radio* and *Newspaper*, with a blue linear-regression line fit separately to each
- ► Can we predict Sales using these three? Perhaps we can do better using a model $Sales \approx f(TV, Radio, Newspaper)$

Notation

- ▶ Here, *Sales* is a response, dependent variable, or target that we wish to predict. We generically refer to the response as *Y*
- ▶ TV is a feature, independent variable, input, or predictor; we name it X_1 . Likewise, name Radio as X_2 , and so on
 - We can refer to the input vector collectively as

$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$$

Now, we write our model as

$$Y = f(X) + \epsilon$$

where ϵ captures measurement errors and other discrepancies and has a mean of zero

Notation

Vectors are represented as a column vector

$$X_1 = \begin{pmatrix} X_{11} \\ X_{21} \\ \vdots \\ X_{n1} \end{pmatrix}$$

- ▶ We will use *n* to represent the number of distinct data points or observations
- We will let p denote the number of variables that are available for predictions
 - A general design matrix or input matrix can be written as an $n \times p$ matrix

$$\begin{pmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{pmatrix}$$

Y is usually a scalar in our example; if we have n observations, it can be written as

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

What is f(X) good for?

- With a good f, we can make predictions of Y at new points X = x
 - We can understand which components of $X = (X_1, X_2, ..., X_p)$ are important in explaining Y and which are irrelevant. e.g., *Seniority* and *Years of Education* have a big impact on *Income*, but *Marital Status* typically does not
 - Depending on the complexity of f, we may be able to understand how each component X_j of X affects Y
- In essence, statistical learning refers to <u>a set of</u> approaches for estimating f

Why estimating *f*

Prediction: In many situations, a set of inputs X are readily available, but the output Y cannot be easily obtained; we can then use \hat{f} as follows

$$\widehat{Y} = \widehat{f}(X)$$

- In this setting, $\hat{f}(X)$ is often treated as a black box
- ▶ There will be reducible and irreducible error
 - Reducible error can be potentially improved by using the most appropriate statistical learning technique to estimate *f*
 - Irreducible error may contain unmeasured variables that are useful in predicting Y: since we don't measure them, f cannot use them for its prediction. It may also include unmeasurable variation
- We will focus on the part of the reducible error

Why estimating *f*

- Inference: We are often interested in understanding the association between Y and $X_1, ..., X_p$. In this situation, we wish to estimate f, but our goal is not necessarily to make predictions for Y
 - ▶ Which predictors are associated with the response?
 - ▶ What is the relationship between the response and each predictor?
 - Can the relationship between Y and each predictor be adequately summarized using a linear equation, or is the relationship more complicated?
- We will see a number of examples that fall into the prediction setting, the inference setting, or a combination of the two

How to estimating *f*

- g is the distribution of data that is unknown
 - We have training set $\{(x_1, y_1), \dots, (x_n, y_n)\}$
- 1. Choose a model f_{θ}
 - Parametric
 - Explicit assumption
 - Estimating a fixed set of parameters by *fitting* or *training*
 - Non-parametric
 - No explicit assumption
 - Need a large number of observations
- 2. Choose a quality measure (objective function) for fitting
 - Mean square error (Likelihood)...
- 3. Optimization (fitting) to choose the best θ
 - Calculus to find close form solution, gradient descent, expectation-maximization...

Supervised vs Unsupervised learning

Supervised Learning problem

- In the regression problem, *Y* is quantitative (e.g., price, blood pressure)
- In the classification problem, Y takes values in a finite, unordered set (survived/died, digit 0-9, cancer class of tissue sample)
- We have training data $(x_1, y_1), ..., (x_n, y_n)$. These are observations (examples, instances) of these measurements

Unsupervised Learning problem

- No outcome variable, just a set of predictors (features) measured on a set of samples
- Delective is fuzzier find groups of samples that behave similarly, find features that behave similarly, find linear combinations of features with the most variation

Semi-supervised learning problem

Only for m of the observations (m < n) that we have the response

The regression problem

Is there an ideal f(X)? In particular, what is a good value for f(X) at any selected value of X, say X = 4? There can be many Y values at X = 4. A good value is

$$f(4) = E(Y|X=4)$$

▶ E(Y|X=4) means the expected value (average) of Y given X=4. This ideal f(x)=E(Y|X=x) is called the regression function

The regression function f(x)

▶ Also defined for vector *X*; e.g.

$$f(x) = f(x_1x_2, x_2) = E(Y | X_1 = x_1, X_2 = x_2, X_3 = x_3)$$

- The ideal or optimal predictor of Y with regard to mean-squared prediction error: f(x) = E(Y|X=x) is the function that minimizes $E[(Y-f(X))^2|X=x]$ over all functions f at all points X=x
- $\epsilon = Y f(x)$ is the <u>irreducible</u> error i.e., even if we knew f(x), we would still make errors in prediction, since at each X = x, there is typically a distribution of possible Y values
- For any estimate $\hat{f}(x)$ of f(x), we have

$$E\left[\left(Y - \hat{f}(x)\right)^{2} \middle| X = x\right] = E[f(x) + \epsilon - \hat{f}(x)]^{2} = [f(x) - \hat{f}(x)]^{2} + Var(\epsilon)$$

How to estimate *f*

- \blacktriangleright Typically, we have few if any data points with X=4 exactly
 - So that we cannot compute E(Y|X=x)!
 - ▶ Relax the definition and let

$$\hat{f}(x) = Ave(Y | X \in N(x))$$

where $N(x)$ is some neighborhood of x .

The curse of dimensionality

- Nearest neighbor averaging can be good for small $p (p \le 4)$ and large n
 - We will discuss smoother versions, such as kernel and spline smoothing later in the course
- Nearest neighbor methods can be lousy when *p* is large. Reason: the <u>curse of dimensionality</u>. Nearest neighbors tend to be far away in high dimensions.
 - We need to get a reasonable fraction of the n values of y_i to average to bring the variance down e.g., 10%
 - A 10% neighborhood in high dimensions need no longer be local, so we lose the spirit of estimating E(Y|X=x) by local averaging

The curse of dimensionality

10% Neighborhood

The curse of dimensionality

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

p	1	2	3	4	5	6
(a) Ball with radius R	2R	πR^2	$\frac{4}{3}\pi R^3$	$\frac{\pi^2}{2}R^4$	$\frac{8\pi^2}{15}R^5$	$\frac{\pi^3}{6}R^6$
(b) Volume of hypercube 2 ^p	2	4	8	16	32	64
r = (a)/(b)	R	$\frac{\pi R^2}{4}$	$\frac{\pi R^3}{6}$	$\frac{\pi^2 R^4}{32}$	$\frac{\pi^2 R^5}{60}$	$\frac{\pi^3 R^6}{384}$

$$r = \frac{\frac{p}{n^2}}{2^p \Gamma(\frac{p}{2}+1)} R^p$$
, it turns out that if we want to cover a fraction of r of the hypercube, we will need a ball with

a radius
$$\frac{2}{\frac{1}{\pi^{\frac{1}{2}}}} \left[r\Gamma(\frac{p}{2}+1) \right]^{\frac{1}{p}}$$
 (note that $\Gamma(\frac{p}{2}+1) \sim \sqrt{\pi p} \left(\frac{p}{2e}\right)^{\frac{p}{2}}$)

See chapter 2 of Foundations of Data Science

Parametric and structured models

▶ The linear model is an important example of a parametric model:

$$f_L(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

- A linear model is specified in terms of p + 1 parameters $\beta_0, \beta_1, ..., \beta_p$
- We estimate the parameters by fitting the model to training data
- Although it is almost never correct, a linear model often serves as a good and interpretable approximation to the unknown true function f(X)

A linear model $f_L(X) = \beta_0 + \beta_1 X$ gives a reasonable fit here

A quadratic model $f_Q(X) = \beta_0 + \beta_1 X + \beta_2 X^2$ fits slightly better

Simulated example. Red points are simulated values for income from the model

$$income = f(education, seniority) + \epsilon$$
 f is the blue surface

Linear regression model fit to the simulated data

 $\hat{f}_L(education, seniority) = \hat{\beta}_0 + \hat{\beta}_1 \times education + \hat{\beta}_2 \times seniority$

More flexible regression model $\hat{f}_s(education, seniority)$ fit to the simulated data. Here we use a technique called a *thin-plate spline* to fit a flexible surface. We control the roughness of the fit (chapter 7)

Fiven more flexible *spline regression model* $\hat{f}_s(education, seniority)$ fit to the simulated data. Here the fitted model makes no errors on the training data! Also known as *overfitting*

Some trade-offs

- Prediction accuracy versus interpretability
 - Linear models are easy to interpret; thin-plate splines are not
- ▶ Good fit versus over-fit or under-fit
 - ▶ How do we know when the fit is just right?
- Parsimony versus black-box
 - We often prefer a simpler model involving fewer variables over a black-box predictor involving them all

Assessing Model Accuracy

- Suppose we fit a model $\hat{f}(x)$ to some training data $Tr = \{x_i, y_i\}, i = 1 \dots n$, and we wish to see how well it performs
 - ▶ We could compute the average squared prediction error over Tr:

$$MSE_{Tr} = Ave_{i \in Tr}[y_i - \hat{f}(x_i)]^2$$

- ▶ This may be biased toward more overfit models
 - Instead, we should, if possible, compute it using fresh test data $Te = \{x_i, y_i\}, i = 1 \dots m,$ $MSE_{Te} = Ave_{i \in Te} [y_i \hat{f}(x_i)]^2$

The black curve is truth. Red curve on the right is MSE_{Te} , grey curve is MSE_{Tr} . Orange, blue and green curves/squares correspond to fits of different flexibility

▶ Here, the truth is smoother, so the smoother fit and linear model do really well

- Here, the truth is wiggly and the noise is low, so the more flexible fits do the best
 - Proof of testing error is usually larger than the training error

Bias-Variance Trade-off

Suppose we have fit a model $\hat{f}(x)$ to some training data Tr, and let (x_0, y_0) be a test observation drawn from the population. If the true model is $Y = f(X) + \epsilon$ (with f(x) = E(Y|X = x)), then $E\left[(x_0 - \hat{f}(x_0))^2\right] = Pigs \left[\hat{f}(x_0, Tr)\right]^2 + Vgr\left[\hat{f}(x_0, Tr)\right] + Vgr(s)$

$$E\left[\left(y_0 - \hat{f}(x_0)\right)^2\right] = Bias_{Tr}\left[\hat{f}(x_0, Tr)\right]^2 + Var_{Tr}\left[\hat{f}(x_0, Tr)\right] + Var(\epsilon)$$

- The expectation averages over the variability of y_0 as well as the variability in Tr. Note that $Bias_{Tr}[\hat{f}(x_0, Tr)] = E[\hat{f}(x_0, Tr)] f(x_0)$
 - Typically, as the *flexibility* of \hat{f} increases, its variance increases, and its bias decreases. So choosing the flexibility based on average test error amounts to a *bias-variance trade-off*
 - Proof of the decomposition

https://nvsyashwanth.github.io/machinelearningmaster/bias-variance/

https://jason-chen-1992.weebly.com/home/-bias-variance-tradeoff

Bias-variance trade-off for the three examples

Classification Problems

- Here the response variable Y is qualitative e.g. email is one of C = (spam, ham) ($ham = good\ email$), digit class is one of $C = \{0, 1, ..., 9\}$. Our goals are to:
 - \blacktriangleright Build a classifier C(X) that assigns a class label from C to a future unlabeled observation X
 - ▶ What is an optimal classifier?
 - Understand how flexibility affects the classification

The orange/blue marks indicate the response *Y*, either 0 or 1

Is there an ideal C(X)? Suppose the K elements in C are numbered $1, 2, \ldots, K$. Let

$$p_k(x) = \Pr(Y = k | X = x), k = 1, 2, ..., K.$$

These are the *conditional class probabilities* at x; e.g., see the little barplot at x = 5. Then the <u>Bayes optimal classifier</u> at x is C(x) = j if $p_j(x) = \max\{p_1(x), p_2(x), \dots, p_k(x)\}$

Nearest-neighbor averaging can be used as before. It also breaks down as the dimension grows. However, the impact on $\hat{C}(x)$ is less than on $\hat{p}_k(x)$, $k = 1, \ldots, K$

Classification: some details

Typically, we measure the performance of $\hat{C}(x)$ using the misclassification error rate:

$$Err_{Te} = Ave_{i \in Te}I[y_i \neq \hat{C}(x_i)]$$

- The Bayes classifier (using the true $\hat{p}_k(x)$) has the smallest error (in the population)
- \triangleright Support-vector machines build structured models for C(x)
- We will also build structured models for representing the $p_k(x)$. e.g., Logistic regression, generalized additive models

The Bayes classifier produces the lowest possible test error rate, called the Bayes error rate

$$1 - \max_{j} \Pr(Y = j | X = x_0)$$

 X_1

► *K*-nearest neighbors (KNN) classifier

►
$$\Pr(Y = j | X = x_0) = \frac{1}{K} \sum_{i \in Tr} I(y_i = j)$$

KNN: K=10

KNN: K=1 KNN: K=100

Appendix

The Bias-variance tradeoff

- $f = f(x), \hat{f} = \hat{f}(x, Tr), Var(X) = E(X^2) E[X]^2$
- ▶ $y = f + \epsilon \rightarrow E(y) = E(f) = f$ (f is deterministic, independent of Tr and \hat{f} is independent of ϵ)
- $Var[y] = E[(y E(y))^{2}] = E[(y f)^{2}] = E[\epsilon^{2}] = Var[\epsilon] + E[\epsilon]^{2} = \sigma^{2}$
- $E\left[\left(y-\hat{f}\right)^{2}\right] = E\left[\left(f+\epsilon-\hat{f}+E\left[\hat{f}\right]-E\left[\hat{f}\right]\right)^{2}\right]$
- $= E\left[\left(f E[\hat{f}]\right)^{2}\right] + E[\epsilon^{2}] + E\left[\left(E[\hat{f}] \hat{f}\right)^{2}\right] + 2E\left[\left(f E[\hat{f}]\right)\epsilon\right] + 2E\left[\epsilon\left(E[\hat{f}] \hat{f}\right)\right]$
- $+2E[(E[\hat{f}]-\hat{f})(f-E[\hat{f}])] = (f-E[\hat{f}])^{2} + E[\epsilon^{2}] + E[(E[\hat{f}]-\hat{f})^{2}]$
 - $= Bias[\hat{f}]^2 + Var[\hat{f}] + \sigma^2$
- $MSE = E_x[Bias_{Tr}[\hat{f}(x,Tr)]^2 + Var_D[\hat{f}(x,Tr)]] + \sigma^2 \text{ (Taking expectation over } x)$

